

Past Papers Int 2 Chemistry

2014 Marking Scheme

Grade	Mark Required		° condidates cabicuina anada
Awarded	(/80)	%	% candidates achieving grade
Α	56+	70%+	33.6%
В	48+	60%+	16.6%
С	40+	50%+	20.0%
D	36+	%40+	9.7%
No award	< 36	<40%	20.2%

Section:	Multiple Choice		Extended Answer	
Average Mark:	20.0	30	28.7	/50

2014 Int2 Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning		
1	D	84	☑A Aluminium is in the block between groups 2 & 3 and is a transition metal ☑B Calcium is in group 2 and is an Alkaline Earth Metal ☑C Copper is in the block between groups 2 & 3 and is a transition metal ☑D Sodium is in group 1 and is an Alkali Metal		
2	Α	76	☑A water is the liquid which does the dissolving ∴ water is the solvent ☑B sugar is a solid which is dissolved ∴ sugar is a solute ☑C lemon juice is a liquid which is dissolved ∴ lemon juice is a solute ☑D carbon dioxide is a gas which is dissolved ∴ carbon dioxide is a solute		
3	В	39	 ☒A Products are higher on diagram ∴ have more energy than reactants ☒B diagram shown is an endothermic reaction and the temperature will fall ☒C diagram shown is an endothermic reaction and heat is absorbed from surroundings ☒D diagram shown is an endothermic reaction as products are higher than reactants 		
4	В	97	 ☑ A Carbohydrate is a food group made from carbon, hydrogen and oxygen ☑ B Enzymes are proteins which act as biological catalyst in living organisms ☑ C Sugars is a food group made from carbon, hydrogen and oxygen ☑ D Fats is a food group made from carbon, hydrogen and oxygen 		
5	D	92	 ☑A Electron arrangement 2,4 = carbon ∴ group 4 element ☑B Electron arrangement 2,5 = nitrogen ∴ group 5 element ☑C Electron arrangement 2,6 = oxygen ∴ group 6 element ☑D Electron arrangement 2,7 = fluorine ∴ group 7 element ∴ element is a halogen 		
6	Α	54	Phosphate PO_4^{3-} is listed in data booklet page 8 \therefore Total negative charge in $Zn_3(PO_4)_2$ formula is 6- as there are two phosphate ions All ionic compounds are neutral over all so the total positive charge must be 6+ \therefore Total positive charge in 3 zinc ions = 6+ \therefore Positive charge on zinc ion = $^{6+}/_3$ = 2+		
7	В	47	☑A Covalent Molecular: does not conduct as solid or liquid and has low bpt ☑B Covalent Network: does not conduct as solid or liquid and has high mpt ☑C Ionic: Does not conduct as solid but does conduct as a liquid ☑D Metallic: Conducts as both as a solid and as a liquid		
8	A	56	☑A H ⁺ ions move to the negative electrode and form H ₂ gas ☑B H ₂ is formed in the reaction at the -ve electrode but not present at the start ☑C Cl ⁻ ions move to the positive electrode and form Cl ₂ gas ☑D Cl ₂ is formed in the reaction at the +ve electrode but not present at the start		
9	C	90	Fe ₂ O ₃ + CO \rightarrow Fe + CO ₂ Fe: 2xFe before arrow but 1xFe after arrow \therefore double Fe after arrow Fe ₂ O ₃ + CO \rightarrow 2Fe + CO ₂ O: 4xO before arrow but 2xO after arrow \therefore double CO ₂ after arrow Fe ₂ O ₃ + CO \rightarrow 2Fe + 2CO ₂ C: 1xC before arrow but 2xC after arrow \therefore double CO before arrow Fe ₂ O ₃ + 2CO \rightarrow 2Fe + 2CO ₂ O: 5xO before arrow but 4xO after arrow \therefore increase CO to 3 before arrow Fe ₂ O ₃ + 3CO \rightarrow 2Fe + 2CO ₂ C: 3xC before arrow but 2xFe after arrow \therefore increase CO ₂ to 3 after arrow Fe ₂ O ₃ + 3CO \rightarrow 2Fe + 3CO ₂		

		81	\blacksquare A 1mol CH ₄ = (1x12)+(4x1) = 12+4 = 16g : 0.5mol = 8g			
10 C			■ B 1mol CO_2 = (1×12)+(2×16) = 12+32 = 44g \therefore 0.5mol = 22g			
10			$\square C \text{ 1mol NO}_2 = (1 \times 14) + (2 \times 16) = 14 + 32 = 46g : 0.5 \text{mol} = 23g$			
			☑D 1mol NH ₃ = $(1\times14)+(3\times1) = 14+3 = 17g : 0.5mol = 8.5g$			
			■ A carbon monoxide is a poisonous gas and must not be formed by the converter			
11	В	92	☑B carbon monoxide is a poisonous gas which is converted into carbon dioxide			
			EC nitrogen monoxide is a poisonous gas and must not be formed by the converter			
			☑D oxygen is a harmless gas and there is no need for the converter to remove it ☑A nitrogen compound formed comes from nitrogen in compound being burned			
			☑B hydrogen compound formed comes from hydrogen in compound being burned			
12		45	☑C compounds of nitrogen, hydrogen and carbon formed mean all three must be in			
1		13	compound being burned			
			☑D oxygen could have come from the air that the compound was burned in			
			A carboxylic acid can be identified from the carboxyl group (-COOH) and '-oic' name ending.			
			methanoic acid ethanoic acid propanoic acid			
13	A	75				
			H-C $H-C-C$ $H-C-C$			
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	_		☑ A reaction would form 1-bromobutane and 2-bromobutane			
14	B	42	☑B reaction would form 2-bromobutane only			
		'-	区 reaction would form 1-bromopentane and 2-bromopentane 区 D reaction would form 2-bromobutane and 3-bromobutane			
			■ A addition: molecule added across a C=C double bond			
4-		04	☑B cracking: bigger saturated molecules break down into smaller unsaturated molecules			
15		81	I EC distillation: separation of molecules with different boiling points			
			☑D hydrolysis: splitting polymers into smaller monomers with water added at the break			
			🗷 A polyethene is a synthetic polymer as it is not found in nature			
16	N	74	☑B polyethene is a synthetic polymer as it is not found in nature			
10	U		▼C polyethene is a thermoplastic polymer as is reshapes on heating			
			D polyethene is synthetic polymer which is thermoplastic			
			■ A fructose is not the monomer to make starch by condensation polymerisation.			
17	В	B 60	$oxedsymbol{\square}$ B starch is made by the condensation polymerisation of glucose monomer units $oxedsymbol{\square}$ C starch is made by condensation where H_2O is removed as the monomers join up			
			\boxtimes D starch is made by condensation where H_2O is removed as the monomers join up			
			■ Starch is made by condensation where H2O is removed as the monomers join up ■ A Glucose turns Benedict's solution blue—brick red			
4.0		<i>c</i> 74	☑B Maltose turns Benedict's solution blue→brick red			
18			☑C Sucrose does not react with either iodine solution or Benedict's solution			
			☑D Starch turns iodine solution yellow→blue/black			
			🗷 A Esters are made from an alcohol and a carboxylic acid joining together			
19		77	☑B Fats are made from glycerol and three fatty acids joining together			
19		///	☑C Proteins are made from amino acid joining together			
			Starch is made from glucose molecules joining together			
			■ A All aqueous solutions contain both hydrogen and hydroxide solutions			
20		79	B All aqueous solutions contain both hydrogen and hydroxide solutions			
			C Acids contain more hydrogen ions than hydroxide ions			
			ED Alkalis contain more hydroxide ions than hydrogen ions A Ammonia solution is a weak alkali and typically gives a pH of around pH-11			
			☑A Ammonia solution is a weak alkali and typically gives a pH of around pH=11 ☑B Sodium hydroxide is a strong alkali and 0.1mol l ⁻¹ NaOH _(aq) has a pH=13			
21	B		EC ethanoic acid is acidic and would give an acidic pH below pH=7			
			■ D hydrochloric acid is acidic and would give an acidic pH below pH=7			
	L	<u> </u>	- 1/1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			

22	Α	68	☑A calcium oxide is a soluble metal oxide which dissolves to form an alkali ☑B nickel oxide is a non-soluble metal oxide so has no effect on pH ☑C nitrogen dioxide is a soluble non-metal oxide and dissolves to form an acid ☑D sulphur dioxide is a soluble non-metal oxide and dissolves to form an acid			
23	В	56	 ■ A no gas produced: magnesium hydroxide + hydrochloric acid → magnesium chloride + water ■ B CO₂ produced: magnesium carbonate + hydrochloric acid → magnesium chloride + water + CO₂ ■ C no gas produced: magnesium oxide + hydrochloric acid → magnesium chloride + water ■ D flammable gas produced: magnesium + hydrochloric acid → magnesium chloride + hydrogen 			
24	D	57	 ■ A sodium nitrate is suitable as a fertiliser as it is soluble and contains nitrogen ■ B ammonium nitrate is suitable as a fertiliser as it is soluble and contains nitrogen ■ C ammonium sulphate is suitable as a fertiliser as it is soluble and contains nitrogen ■ D sodium sulphate is not a fertiliser as it has no nitrogen, phosphorus or potassium 			
25	Α	79	Reaction With Oxygen Reaction Fast Reaction With Water With Water Reaction With Water Reaction With Acids With dilute acids No Reaction With Oxygen With Oxygen With Oxygen With Oxygen Reaction With Water Reaction With Slow Reaction With Slow No Reaction With dilute acids			
26	D	59	 ☑A addition: molecule added across a C=C double bond ☑B displacement: higher up metals displace lower down ions from compounds ☑C neutralisation: Hydrogen H⁺ ions react to become water H₂O ☑D precipitation: insoluble solid formed when two solutions are mixed 			
27	C	46	The two stages in the rusting of iron are: $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$ followed by $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$			
28	С	48	 ☑A hexane C₆H₁₄ is covalent and cannot be used as an electrolyte ☑B copper(II) oxide is ionic but cannot be used as an electrolyte as it is insoluble ☑C Calcium chloride is ionic and soluble and can be used as an electrolyte ☑D carbon chloride CCl₄ is covalent and cannot be used as an electrolyte 			
29	В	49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
30	В	68	Method Electrolysis Heat With Carbon Heat Alone Metals Made This Way Potassium Sodium Lithium Calcium Magnesium Aluminium Zinc Iron Nickel Tin Lead Copper Mercury Silver Gold Platinum Reason most reactive metals medium reactive metals least reactive metals			

	2014 Int2 Chemistry Marking Scheme				
Long Qu	Answer	Reasoning			
1a	Hydrogen	$ACID$ + METAL \rightarrow SALT + HYDROGEN hydrochloric acid + magnesium \rightarrow magnesium chloride + hydrogen			
1b(i)	Use syringe to collect gas	All gases can be collected in a gas syringe and their volumes measured against the scale on the gas syringe. Gases which are insoluble can also be collected over water as shown in the diagram.			
1b(ii)	Line graph showing:	½mark: labelling axes ½mark: correct scales ½mark: plotting points ½mark: drawing line			
1b(iii)	10	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{86 - 46}{6 - 2} = 10 \text{ cm}^3 \text{ min}^{-1}$			
2a	Repulsion/deflection by (positive) nucleus	Positive (alpha) particles mainly travel straight through the layer of gold. Some of the positive (alpha) particles travel close to the nuclei of the gold atoms. The nuclei of the gold atoms are also positive and deflect the passing positive (alpha) particles by repulsion of positives charges.			
2b(i)	79 79 118	Number of protons = atomic number = 79 Number of electrons = atomic number - charge = 79 - 0 = 79 Number of neutrons = mass no - atomic no. = 197 - 79 = 118			
2b(ii)	Answer from:	Same atomic number but different mass number number of protons			
3a	Oxygen Argon Nitrogen	When the temperature falls below the boiling point of a substance the substance condenses from a gas to a liquid. As temperature decreases, oxygen will be the first gas to condense into a liquid (at -183°C), then argon condenses (at -186°C) and finally nitrogen condenses (at -196°C)			
3b	Distillation	Distillation is the process which separates chemicals with different boiling points.			
3c	Air has too low a percentage of oxygen	Oxygen gas will relight a glowing splint because the splint glows so bright that the heat released will reignite the splint.			
4 a	Diagram showing:	H N H or H N DH			
4b	Weak	Covalent molecular substances are often gases or liquids at room temperature because there are only weak attractions/bonds between the molecules.			
4c(i)	Partial dissociation into ions	Weak acids and alkali do not fully dissociate into ions.			
4c(ii)	1490				

5a	Exothermic	Type Description AH sign Exothermic Reaction which gives off heat/energy to surroundings negative.				
		Endothermic Reaction which absorbs heat	Chi II Chi			
5b	H CN H CN H CN -C-C-C-C-C-C- H H H H H COOCH3 COOCH3	$egin{bmatrix} egin{pmatrix} egi$	CN H CN H CN C-C-C- - H H COOCH3 COOCH3 Repeating Unit			
5c	Carbon monoxide or hydrogen cyanide	All carbon-based molecules will releas limited supply of air. Molecules that c release poisonous hydrogen cyanide H	contain the -CN nitrile group will also			
6a	Less fructose is required for same sweetness	Because fructose is twice as sweet as glucose, half the mass of fructose is required to achieve the same level of sweetness in a food compared to glucose. Because glucose and fructose have very similar energy contents (calories), this halves the calories in foods if fructose is used.				
6b(i)	Isomers	Isomers have the same molecular formula	but different structural formulae.			
6b(ii)	Hydroxyl	The -OH group found in alcohols is	s called the hydroxyl group.			
7a(i)	Heterogeneous	Type of Catalyst Homogeneous Catalyst in Heterogeneous Catalyst in	Definition same. state as reactants different state from reactants			
7a(ii)	3-methylheptane	Side group on carbon 3 from right	name ends in methylheptane name is 3-methylheptane			
		All the isomers of octane are listed below. Be				
			2-methylheptane			
		3-methylheptane 2,2-dimethylhexane	4-methylheptane 2,3-dimethylhexane			
	Any C ₈ H ₁₈ structure other than 3-methylheptane.	2,4-dimethylhexane	2,5-dimethylhexane			
7a(iii)		3,3-dimethylhexane	3,4-dimethylhexane			
		3-ethylhexane	2,3,4-trimethylpentane			
	Structure must have 8 carbons	2,2,3-trimethylpentane	2,2,4-trimethylpentane			
	18 hydrogens 4 bonds per carbon	2,3,3-trimethylpentane	3-ethyl-2-methylpentane			
	1 bond per hydrogen	3-ethyl-3-methylpentane	2,2,3,3-tetramethylbutane			
7b(i)	Heat catalyst then heat paraffin	The catalyst must be at a high temperature before it will work efficiently. The Bunsen burner initially heats only the catalyst and when it is hot the Bunsen burner is then moved under the paraffin with the heating shared between the paraffin and the catalyst to keep both warm.				
7b(ii)	Bromine decolourises	The alkenes produced during the cracking reaction react with				
7 b(iii)	Remove test tube before heating stops	When the test tube is heated, the air inside expands and bubbles leave the delivery tube. When heating is stopped, the air inside contracts back to its original size but gas cannot re-enter the delivery tube so liquid is sucked up instead. Cold liquid can cause hot glass to crack.				

8a(i)	Ester	Esters are formed by the condensation of alcohols and carboxylic acids. All esters have an ester link: - C - O -
8a(ii)	No C=C double bonds	Saturated hydrocarbons contain C - C single bonds in the carbon chain of the molecule. Unsaturated hydrocarbons contain C = C double bonds (or C = C triple bonds) which are detected by the decolourisation of bromine solution.
8b	Glycerol	Glycerol is also known as propane-1,2,3-triol and has the structure: H H H H H H H H H H H H H H H H H H H
8c	3.344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9a	Strong or high strength	Plastic Kevlar Poly(ethenol) Poly(ethyne) Biopol Property Strong Soluble in water Electrical conductor Biopdegradable
9b(i)	O H 	Amide links are found in polyamide OH polymers while peptide links are found in proteins. Both have the structure: $-C-N-$
9b(ii)	One from:	O C-C ₆ H ₄ -C or OH HO H
10a	1	$1 \text{mol } CH_3COOH = (2 \times 12) + (4 \times 1) + (2 \times 16) = 24 + 4 + 32 = 60g$ $\mathbf{no. of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{6}{60} = 0.1 \text{ mol}$ $\mathbf{concentration} = \frac{\mathbf{no. of mol}}{\mathbf{volume}} = \frac{0.1 \text{mol}}{0.1 \text{litres}} = 1 \text{ mol } l^{-1}$
10b	slower lower	Magnesium reacts faster with hydrochloric acid than ethanoic acid as hydrochloric acid is a fully dissociated strong acid. Ethanoic acid is a partially dissociated weak acid which contains much less H* ions at any one time to react with magnesium. Strong acids are fully ionised and the higher degree of ionisation provides the additional ions to increase the conductivity of the solution.
11a	Sulphuric acid	$ACID$ + METAL \rightarrow SALT + HYDROGEN sulphuric acid + magnesium \rightarrow magnesium sulphate + hydrogen H_2SO_4 + Mg \rightarrow $MgSO_4$ + H_2
11b	2. Filtration 3. Evaporation	Filtration Evaporation mixture filter paper funnel Unreacted magnesium sulphate solution Bunsen burner HEAT

12a	Nickel is higher up the electrochemical series	Higher up metals in the electrochemical series corrode to protect lower down metals in the electrochemical series. This is sacrificial protection.			
12b	$Ni \rightarrow Ni^{2+} + 2e^{-}$	Equation is on page 10 of data booklet but in the reverse direction	n.		
12c	Prevents air or water getting to metal	Air/oxygen and water are <u>both</u> required for corrosion to take place Prevent one or both getting to metal then corrosion is prevented.			
13a	To complete the circuit	The ions in an electrolyte complete the circuit by moving charge to balance the movement of electrons through the cell.	O		
13b(i)	10.92	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
13b(ii)	Decrease in voltage	Copper and silver are closer together on the electrochemical series			
14a	Ore	Metal ores are compounds of metals from which the metal can be extracted by chemical reaction			
14b	Al(OH)₃	Write down Valency below each ion's symbol Al OH- Al			
14c	Reduction	Al_2O_3 contains Al^{3+} ions which are reduced to form atoms of Al^{3+} + $3e^- \rightarrow Al^-$			